13 research outputs found

    Design of Passive Analog Electronic Circuits Using Hybrid Modified UMDA algorithm

    Get PDF
    Hybrid evolutionary passive analog circuits synthesis method based on modified Univariate Marginal Distribution Algorithm (UMDA) and a local search algorithm is proposed in the paper. The modification of the UMDA algorithm which allows to specify the maximum number of the nodes and the maximum number of the components of the synthesized circuit is proposed. The proposed hybrid approach efficiently reduces the number of the objective function evaluations. The modified UMDA algorithm is used for synthesis of the topology and the local search algorithm is used for determination of the parameters of the components of the designed circuit. As an example the proposed method is applied to a problem of synthesis of the fractional capacitor circuit

    Evolutionary Synthesis of Fractional Capacitor Using Simulated Annealing Method

    Get PDF
    Synthesis of fractional capacitor using classical analog circuit synthesis method was described in [6]. The work presented in this paper is focused on synthesis of the same problem by means of evolutionary method simulated annealing. Based on given desired characteristic function as input impedance or transfer function, the proposed method is able to synthesize topology and values of the components of the desired analog circuit. Comparison of the results given in [6] and results obtained by the proposed method will be given and discussed

    Experimental Study of the Sampled Labyrinth Chaos

    Get PDF
    In this paper, some new numerical as well as experimental results connected with the so-called labyrinth chaos are presented. This very unusual chaotic motion can be generated by mathematical model involving the scalar goniometrical functions which makes a three-dimensional autonomous dynamical system strongly nonlinear. Final circuitry implementation with analog core and digital parts can be used for modeling Brownian motion. From the viewpoint of generating chaotic motion by some electronic circuit, first step is to solve problems associated with the two-port nonlinear transfer functions synthesis. In the case of labyrinth chaos the finite dynamical range of the input variables introduced by the used active elements usually limits the performance greatly, similarly as it holds for the multi-grid spiral attractors. This paper shows an elegant way how to remove these obstacles by using uni-versal multiple-port with internal digital signal processing

    Modeling Deterministic Chaos Using Electronic Circuits

    Get PDF
    This paper brings a note on systematic circuit synthesis methods for modeling the dynamical systems given by mathematical model. Both classical synthesis and integrator based method is demonstrated via the relatively complicated real physical systems with possible chaotic solution. A variety of the different active building blocks are utilized to make the final circuits as simple as possible while preserving easily measurable voltage-mode state variables. Brief experimental verification, i.e. oscilloscope screenshots, is presented. The observed attractors have some structural stability and good relationship to their numerically integrated counterparts

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    Comparison of modeling techniques for power amplifiers

    No full text
    International audienc
    corecore